IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v24y2005i5p1257-1268.html
   My bibliography  Save this article

Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation

Author

Listed:
  • Wang, Mingliang
  • Li, Xiangzheng

Abstract

We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the new Hamiltonian amplitude equation introduced by Wadati et al. When the modulus m approaches to 1 and 0, then the hyperbolic function solutions (including the solitary wave solutions) and trigonometric function solutions are also given respectively. As the parameter ε goes to zero, the new Hamiltonian amplitude equation becomes the well-known nonlinear Schrödinger equation (NLS), and at least there are 37 kinds of solutions of NLS can be derived from the solutions of the new Hamiltonian amplitude equation.

Suggested Citation

  • Wang, Mingliang & Li, Xiangzheng, 2005. "Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1257-1268.
  • Handle: RePEc:eee:chsofr:v:24:y:2005:i:5:p:1257-1268
    DOI: 10.1016/j.chaos.2004.09.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904006186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.09.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Xiping & Dai, Zhengde & Li, Donglong, 2009. "New periodic soliton solutions for the (3+1)-dimensional potential-YTSF equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 657-661.
    2. Sheng, Zhang, 2006. "The periodic wave solutions for the (2+1)-dimensional Konopelchenko–Dubrovsky equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1213-1220.
    3. He, Ji-Huan & Wu, Xu-Hong, 2006. "Construction of solitary solution and compacton-like solution by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 108-113.
    4. Islam, Md. Ekramul & Mannaf, Md. Abde & Khan, Kamruzzaman & Akbar, M. Ali, 2024. "Soliton’s behavior and stability analysis to a model in mathematical physics," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    5. Li, Donglong & Dai, Zhengde & Guo, Yanfeng & Zhou, Hongwei, 2009. "Doubly periodic wave solution to two-dimensional diffractive-diffusive Ginzburg–Landau equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2288-2296.
    6. Zhang, Huiqun, 2009. "A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1020-1026.
    7. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    8. Wang, Deng-Shan & Li, Hongbo, 2008. "Symbolic computation and non-travelling wave solutions of (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 383-390.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:24:y:2005:i:5:p:1257-1268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.