IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v24y2005i4p947-956.html
   My bibliography  Save this article

Intersections of stable and unstable manifolds: the skeleton of Lagrangian chaos

Author

Listed:
  • Feudel, F.
  • Witt, A.
  • Gellert, M.
  • Kurths, J.
  • Grebogi, C.
  • Sanjuán, M.A.F.

Abstract

We study Hamiltonian chaos generated by the dynamics of passive tracers moving in a two-dimensional fluid flow and describe the complex structure formed in a chaotic layer that separates a vortex region from the shear flow. The stable and unstable manifolds of unstable periodic orbits are computed. It is shown that their intersections in the Poincaré map as an invariant set of homoclinic points constitute the backbone of the chaotic layer. Special attention is paid to the finite time properties of the chaotic layer. In particular, finite time Lyapunov exponents are computed and a scaling law of the variance of their distribution is derived. Additionally, the box counting dimension as an effective dimension to characterize the fractal properties of the layer is estimated for different duration times of simulation. Its behavior in the asymptotic time limit is discussed. By computing the Lyapunov exponents and by applying methods of symbolic dynamics, the formation of the layer as a function of the external forcing strength, which in turn represents the perturbation of the originally integrable system, is characterized. In particular, it is shown that the capture of KAM tori by the layer has a remarkable influence on the averaged Lyapunov exponents.

Suggested Citation

  • Feudel, F. & Witt, A. & Gellert, M. & Kurths, J. & Grebogi, C. & Sanjuán, M.A.F., 2005. "Intersections of stable and unstable manifolds: the skeleton of Lagrangian chaos," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 947-956.
  • Handle: RePEc:eee:chsofr:v:24:y:2005:i:4:p:947-956
    DOI: 10.1016/j.chaos.2004.09.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904006125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.09.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hassan Aref, 1999. "Order in chaos," Nature, Nature, vol. 401(6755), pages 756-758, October.
    2. D. Rothstein & E. Henry & J. P. Gollub, 1999. "Persistent patterns in transient chaotic fluid mixing," Nature, Nature, vol. 401(6755), pages 770-772, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harle, M. & Feudel, U., 2007. "Hierarchy of islands in conservative systems yields multimodal distributions of FTLEs," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 130-137.
    2. Siewe, M. Siewe & Cao, Hongjun & Sanjuán, Miguel A.F., 2009. "Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh–Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1092-1099.
    3. Chen, Yen-Sheng & Chang, Chien-Cheng, 2009. "Impulsive synchronization of Lipschitz chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1221-1228.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:24:y:2005:i:4:p:947-956. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.