IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v23y2005i4p1385-1398.html
   My bibliography  Save this article

Poincaré bifurcation of a three-dimensional system

Author

Listed:
  • Liu, Xuanliang
  • Han, Maoan

Abstract

Consider a three-dimensional system having an invariant surface. By using bifurcation techniques and analyzing the solutions of bifurcation equations, we study the spatial bifurcation phenomena near a family of periodic orbits and a center in the invariant surface respectively. New formula of Melnikov function is derived and sufficient conditions for the existence of periodic orbits are obtained. An application of our results to a modified van der Pol–Duffing electronic circuit is given.

Suggested Citation

  • Liu, Xuanliang & Han, Maoan, 2005. "Poincaré bifurcation of a three-dimensional system," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1385-1398.
  • Handle: RePEc:eee:chsofr:v:23:y:2005:i:4:p:1385-1398
    DOI: 10.1016/j.chaos.2004.06.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904003959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.06.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yuzhu & Fu, Yuxuan & Qiao, Zijian & Kang, Yanmei, 2021. "Chaotic resonance in a fractional-order oscillator system with application to mechanical fault diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Ye, Zhiyong & Han, Maoan, 2006. "Singular limit cycle bifurcations to closed orbits and invariant tori," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 758-767.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:23:y:2005:i:4:p:1385-1398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.