IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v23y2005i4p1125-1136.html
   My bibliography  Save this article

Return anomalies on the Nikkei: Are they statistical illusions?

Author

Listed:
  • Batten, Jonathan A.
  • Ellis, Craig
  • Fetherston, Thomas A.

Abstract

This study investigates the sensitivity of the long-term return anomaly observed on the Nikkei stock index to sample and method bias using daily data from the period 3 January 1980 to 31 October 2000. Initially, the CUSUM statistic is employed to identify sub-periods of sign shifts in the mean returns. We find that the null hypothesis of no long-term dependence is accepted for the whole sample and every sub-period using the modified rescaled range test, but not using the classical rescaled adjusted range test. We conclude that researchers may inadvertently introduce sample and method bias into their studies of the time series properties of the Nikkei unless sample period and method are considered.

Suggested Citation

  • Batten, Jonathan A. & Ellis, Craig & Fetherston, Thomas A., 2005. "Return anomalies on the Nikkei: Are they statistical illusions?," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1125-1136.
  • Handle: RePEc:eee:chsofr:v:23:y:2005:i:4:p:1125-1136
    DOI: 10.1016/j.chaos.2004.06.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904003935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.06.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Corazza & A.G. Malliaris & Carla Nardelli, 1997. "Searching for fractal structure in agricultural futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(4), pages 433-473, June.
    2. Batten, Jonathan & Ellis, Craig & Fetherston, Thomas A., 2000. "Are long-term return anomalies illusions?: Evidence from the spot Yen," Japan and the World Economy, Elsevier, vol. 12(4), pages 337-349, December.
    3. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    4. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    5. Hudson, Robert & Dempsey, Michael & Keasey, Kevin, 1996. "A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices - 1935 to 1994," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1121-1132, July.
    6. Opong, Kwaku K. & Mulholland, Gwyneth & Fox, Alan F. & Farahmand, Kambiz, 1999. "The behaviour of some UK equity indices: An application of Hurst and BDS tests1," Journal of Empirical Finance, Elsevier, vol. 6(3), pages 267-282, September.
    7. Hendrik Bessembinder & Kalok Chan, 1998. "Market Efficiency and the Returns to Technical Analysis," Financial Management, Financial Management Association, vol. 27(2), Summer.
    8. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    9. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    10. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    11. Geweke, John, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 269-271, July.
    12. Jacobsen, Ben, 1996. "Long term dependence in stock returns," Journal of Empirical Finance, Elsevier, vol. 3(4), pages 393-417, December.
    13. Benoit B. Mandelbrot, 1972. "Statistical Methodology for Nonperiodic Cycles: From the Covariance To R/S Analysis," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 1, number 3, pages 259-290, National Bureau of Economic Research, Inc.
    14. Batten, Jonathan & Ellis, Craig, 1996. "Fractal structures and naive trading systems: Evidence from the spot US dollar/Japanese yen," Japan and the World Economy, Elsevier, vol. 8(4), pages 411-421, December.
    15. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    16. Howe, John S. & Martin, Deryl W. & WoodJr., Bob G., 1999. "Much ado about nothing: Long-term memory in Pacific Rim equity markets," International Review of Financial Analysis, Elsevier, vol. 8(2), pages 139-151, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    2. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," Discussion Papers of DIW Berlin 1647, DIW Berlin, German Institute for Economic Research.
    3. Charfeddine, Lanouar & Maouchi, Youcef, 2019. "Are shocks on the returns and volatility of cryptocurrencies really persistent?," Finance Research Letters, Elsevier, vol. 28(C), pages 423-430.
    4. Batten, Jonathan A. & Ellis, Craig A. & Fethertson, Thomas A., 2008. "Sample period selection and long-term dependence: New evidence from the Dow Jones index," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1126-1140.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batten, Jonathan A. & Ellis, Craig A. & Fethertson, Thomas A., 2008. "Sample period selection and long-term dependence: New evidence from the Dow Jones index," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1126-1140.
    2. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    3. Assaf, Ata, 2015. "Long memory and level shifts in REITs returns and volatility," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 172-182.
    4. Bollerslev, Tim & Wright, Jonathan H., 2000. "Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data," Journal of Econometrics, Elsevier, vol. 98(1), pages 81-106, September.
    5. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    6. Marco Corazza & A. G. Malliaris, 2005. "Multi-Fractality in Foreign Currency Markets," World Scientific Book Chapters, in: Economic Uncertainty, Instabilities And Asset Bubbles Selected Essays, chapter 11, pages 151-184, World Scientific Publishing Co. Pte. Ltd..
    7. Mitra, S.K. & Bawa, Jaslene, 2017. "Can trade opportunities and returns be generated in a trend persistent series? Evidence from global indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 124-135.
    8. A. Assaf, 2007. "Fractional integration in the equity markets of MENA region," Applied Financial Economics, Taylor & Francis Journals, vol. 17(9), pages 709-723.
    9. Yalama, Abdullah & Celik, Sibel, 2013. "Real or spurious long memory characteristics of volatility: Empirical evidence from an emerging market," Economic Modelling, Elsevier, vol. 30(C), pages 67-72.
    10. Batten, Jonathan & Ellis, Craig & Mellor, Robert, 1999. "Scaling laws in variance as a measure of long-term dependence," International Review of Financial Analysis, Elsevier, vol. 8(2), pages 123-138, June.
    11. Assaf, A., 2006. "Dependence and mean reversion in stock prices: The case of the MENA region," Research in International Business and Finance, Elsevier, vol. 20(3), pages 286-304, September.
    12. Batten, Jonathan & Ellis, Craig & Fetherston, Thomas A., 2000. "Are long-term return anomalies illusions?: Evidence from the spot Yen," Japan and the World Economy, Elsevier, vol. 12(4), pages 337-349, December.
    13. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    14. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    15. Assaf, Ata, 2016. "MENA stock market volatility persistence: Evidence before and after the financial crisis of 2008," Research in International Business and Finance, Elsevier, vol. 36(C), pages 222-240.
    16. Ritesh Kumar Mishra & Sanjay Sehgal & N.R. Bhanumurthy, 2011. "A search for long‐range dependence and chaotic structure in Indian stock market," Review of Financial Economics, John Wiley & Sons, vol. 20(2), pages 96-104, May.
    17. Ivani Bora & Naliniprava Tripathy, 2016. "Random or Deterministic? Evidence from Indian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(4), pages 1716-1721.
    18. Erhard Reschenhofer & Manveer K. Mangat, 2020. "Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data," Econometrics, MDPI, vol. 8(4), pages 1-15, October.
    19. Gil-Alana, Luis A. & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2014. "On the persistence and volatility in European, American and Asian stocks bull and bear markets," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 149-162.
    20. Kim Liow, 2009. "Long-term Memory in Volatility: Some Evidence from International Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 39(4), pages 415-438, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:23:y:2005:i:4:p:1125-1136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.