IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics096007792500253x.html
   My bibliography  Save this article

Hamiltonian optimal control of quarantine against epidemic spreading on complex networks

Author

Listed:
  • Fan, Yufei
  • Meng, Xueyu
  • Liu, Jun
  • Ma, Jun-Chao
  • Cai, Zhiqiang
  • Si, Shubin

Abstract

Effective optimization of prevention and control measures can significantly organize the spread of infectious diseases. In this paper, we construct an SIQRSV (Susceptible-Infected-Quarantined-Recovered-Susceptible-Vaccinated) compartmental model for infectious diseases on complex networks to study the infection mechanism. Specifically, we analyze the impact mechanism of infection rates, consider network heterogeneity, and examine the influence of network topology on disease spread. Using a system of differential equations, we can elucidate the disease transmission process. Furthermore, we obtain the disease-free equilibrium point of the system in its steady state. By constructing an autonomous equation, we derive the basic reproduction number of the system, and further validate it using the next-generation matrix method. Additionally, through the Jacobian matrix, we demonstrate the stability of the disease-free equilibrium points. Subsequently, based on the compartmental model, we consider the costs of treatment, control measures, and vaccination to construct a Hamiltonian system to optimize the quarantine rate. Finally, we conduct simulation experiments based on our proposed model on various networks, including BA scale-free networks and four empirical networks. The results indicate that compared to random quarantine measures, our optimized measures can effectively suppress the spread of infectious diseases, thereby providing theoretical support for policymakers in formulating control measures.

Suggested Citation

  • Fan, Yufei & Meng, Xueyu & Liu, Jun & Ma, Jun-Chao & Cai, Zhiqiang & Si, Shubin, 2025. "Hamiltonian optimal control of quarantine against epidemic spreading on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s096007792500253x
    DOI: 10.1016/j.chaos.2025.116240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792500253X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s096007792500253x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.