IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925002474.html
   My bibliography  Save this article

Heterogeneous Hopfield neural network with analog implementation

Author

Listed:
  • Bao, Bocheng
  • Zhou, Chunlong
  • Bao, Han
  • Chen, Bei
  • Chen, Mo

Abstract

The activation function plays a crucial role as a nonlinear factor in the Hopfield neural network. However, limited attention has been given to studying heterogeneous activation functions. In this study, we present a three-neuron heterogeneous Hopfield neural network incorporating two distinct activation functions, namely hyperbolic tangent function and sine function. The kinetics of the heterogeneous neural network is investigated theoretically and numerically, and the kinetic effect of the sine activation function is revealed thereby. The findings demonstrate the presence of intricate kinetics, including chaos, period, stable point, and coexisting attractors, and the enlargement of chaotic kinetics distribution on the parameter plane by sine activation function within the heterogeneous neural network. Notably, an analog circuit is designed on a hardware level to simplify the implementation of the heterogeneous Hopfield neural network and experimental measurements provide strong validation for the numerical findings.

Suggested Citation

  • Bao, Bocheng & Zhou, Chunlong & Bao, Han & Chen, Bei & Chen, Mo, 2025. "Heterogeneous Hopfield neural network with analog implementation," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002474
    DOI: 10.1016/j.chaos.2025.116234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925002474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.