Author
Listed:
- Raza, Qadeer
- Wang, Xiaodong
- Mushtaq, Tahir
- Ali, Bagh
- Shah, Nehad Ali
Abstract
This study investigates the effect of the single-walled carbon nanotube (SWCNT) nanoparticle radius on the mixed convection and nanolayer thermal conductivity flow of a Boger nanofluid over a stretching disk. Due to their elastic and non-Newtonian properties, Boger fluids are applicable in fields like polymer processing, rheological studies, enhanced oil recovery, and industries such as biomedical, food, and cosmetics, where simulating complex fluid flow behaviors is crucial. The research further explores the heat and mass transfer of the Boger fluid, considering factors such as viscous dissipation, Joule heating, magnetic field influence, porous medium permeability, and activation energy, while focusing on the flow behavior of motile microorganisms. The partial differential equations (PDEs) governing the system are reformulated in dimensionless form using appropriate non-dimensional variables. The finite element method (FEM) is used to solve these nonlinear and complex flow equations through an iterative approach, generating both numerical solutions and graphical representations of the nonlinear system via MATLAB programming. To ensure the reliability and accuracy of the numerical solution, convergence criteria are assessed, and results are compared with established reference solutions. The impact of various dimensionless variables on different flow profiles is analyzed through 2D and 3D graphical representations, as well as numerical analysis of key physical quantities. The study finds that expanding the nanoparticle radius increases skin friction, while the Nusselt number decreases in the porous disk, with optimal results occurring at τ∗=0.1. The velocity profile improves with a higher solvent fraction, but diminishes as the relaxation time ratio increases at η∗=0.7 and τ∗=1.96. Increasing nanolayer thickness enhances temperature distribution, whereas a larger particle diameter reduces the heat transfer rate in nanofluid flow. Higher values of dimensional activation energy enhance the concentration profile, while an increase in temperature difference and dimensional reaction rate parameters reduces the mass transfer rate with variations in τ∗ and η∗. Additionally, higher values of the bioconvection Lewis and Peclet number parameters have opposite effects on microorganism distribution for different values of τ∗ and η∗, with the Sherwood number decreasing with larger dimensional activation energy values, and larger values of the motile Schmidt number enhancing the flow of motile microorganisms.
Suggested Citation
Raza, Qadeer & Wang, Xiaodong & Mushtaq, Tahir & Ali, Bagh & Shah, Nehad Ali, 2025.
"Finite element analysis of nanolayer thermal conductivity in Boger nanofluid flow with radius of nanoparticle and motile microorganisms under time-dependent conditions,"
Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
Handle:
RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002188
DOI: 10.1016/j.chaos.2025.116205
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002188. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.