IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925002127.html
   My bibliography  Save this article

Quadratic solitons in higher-order topological insulators

Author

Listed:
  • Kartashov, Yaroslav V.

Abstract

I consider higher-order topological insulator (HOTI) created in χ2 nonlinear medium and based on two-dimensional generalization of the Su-Schrieffer-Heeger waveguide array, where transition between trivial and topological phases is achieved by shift of the four waveguides in the unit cell towards its center or towards its periphery. Such HOTI can support linear topological corner states that give rise to rich families of quadratic topological solitons bifurcating from linear corner states. The presence of phase mismatch between parametrically interacting fundamental-frequency (FF) and second-harmonic (SH) waves drastically affects the bifurcation scenarios and domains of soliton existence, making the families of corner solitons much richer in comparison with those in HOTIs with cubic nonlinearity. For instance, the internal soliton structure strongly depends on the location of propagation constant in forbidden gaps in spectra of both FF and SH waves. Two different types of corner solitons are obtained, where either FF or SH wave dominates in the bifurcation point from linear corner state. Because the waveguides are two-mode for SH wave, its spectrum features two groups of forbidden gaps with corner states of different symmetry appearing in each of them. Such corner states give rise to different families of corner solitons. Stability analysis shows that corner solitons in quadratic HOTI may feature wide stability domains and therefore are observable experimentally. These results illustrate how parametric nonlinear interactions enrich the behavior of topological excitations and allow to control their shapes.

Suggested Citation

  • Kartashov, Yaroslav V., 2025. "Quadratic solitons in higher-order topological insulators," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002127
    DOI: 10.1016/j.chaos.2025.116199
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925002127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.