IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925001912.html
   My bibliography  Save this article

Existence and dynamics of modulated solitary waves in the modified Peyrard–Bishop model of DNA

Author

Listed:
  • Djine, Arnaud
  • Deffo, Guy Roger
  • Yamgoué, Serge Bruno

Abstract

In this paper, we study the existence and dynamics of solitary waves in the modified Peyrard–Bishop (PB) model of DNA. Firstly, we introduce the solvent interaction function on the usual model and study its effects on the frequency. In the second place, using the semi-discrete approximation, we show that the dynamics of modulated waves in the network are governed by a quintic nonlinear Schrödinger (QNLS) equation. In the quest to find the exact solitary wave solutions, we introduce an ansatz which leads to a cubic–quintic Duffing oscillator equation. Based on the dynamical system approach, we present all phase portraits of the dynamical system. The obtained results show several new phase portraits that cannot exist without the effect of solvent interaction. The exact representations of the nonlinear localized waves corresponding to the homoclinic and heteroclinic orbits in the phase portrait of the dynamical system are given. These waves include bright soliton, kink and anti-kink solitons, and dark soliton. In addition, the impact of solvent parameters on the wave-shape profile of these solutions is studied. It shows that the solvent parameter considerably affects the amplitude and the width of each of the above-enumerated solitary waves.

Suggested Citation

  • Djine, Arnaud & Deffo, Guy Roger & Yamgoué, Serge Bruno, 2025. "Existence and dynamics of modulated solitary waves in the modified Peyrard–Bishop model of DNA," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001912
    DOI: 10.1016/j.chaos.2025.116178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.