IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925001705.html
   My bibliography  Save this article

Optimizing fractional mathematical frameworks for cancer tumor analysis with residual power series

Author

Listed:
  • Alharbi, Weam G.
  • Maneea, M.
  • Ali, Khalid K.

Abstract

In this paper, we employ the Residual Power Series Method (RPSM) to derive an approximate computational solution for a mathematical model of cancer tumors. Our study specifically examines the effects of chemotherapy on cancer, investigating the interactions among chemotherapeutic agents, tumor cells, normal cells, and immune cells within the framework of fractional partial differential equations (FPDEs). The RPSM is utilized to deliver highly accurate solutions in the form of series with rapid convergence, even for nonlinear and complex models. Mathematical modeling is essential for exploring hypotheses related to biological phenomena, particularly in recent decades, where significant advancements have been made in predicting chemotherapy outcomes through the modeling of tumor-immune system interactions. In this research, we analyze the impact of cancer tumors through a system of FPDEs defined by the Caputo derivative. We present two- and three-dimensional graphs to illustrate the relationships between various parameters and variables, thereby demonstrating the effects of chemotherapy on cellular dynamics.

Suggested Citation

  • Alharbi, Weam G. & Maneea, M. & Ali, Khalid K., 2025. "Optimizing fractional mathematical frameworks for cancer tumor analysis with residual power series," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001705
    DOI: 10.1016/j.chaos.2025.116157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.