IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925001158.html
   My bibliography  Save this article

A dynamic station-line centrality for identifying critical stations in bus-metro networks

Author

Listed:
  • Li, Xianghua
  • Teng, Min
  • Jiang, Shihong
  • Han, Zhen
  • Gao, Chao
  • Nekorkin, Vladimir
  • Radeva, Petia

Abstract

Accurate identification of critical stations is essential for urban public transport networks (UPTNs). However, existing methods mainly focus on the static network structure and single transport systems, limiting their capacity to accurately capture the time-varying importance of stations. To address the limitation, this paper proposes a new method named dynamic station-line centrality (DSLC) to accurately identify the critical stations within bus-metro networks. Initially, this paper constructs a bus-metro load network (BMN) model to address the interaction between bus and metro systems. BMN can effectively reveal the connection tightness between stations, track transfers between different systems, and monitor dynamic passenger flows. Subsequently, we propose DSLC to accurately assess and quantify the time-varying importance of stations. Specifically, a topology enhancement strategy leveraging dynamic passenger flows and community structures is proposed to enhance the topology characteristics of nodes with great passenger flow significance, while overcoming the reliance on time-consuming shortest path algorithms. Additionally, DSLC addresses the identification of time-varying node importance by integrating the reinforcing relationship between stations and server lines. Extensive experiments on a public dataset of Shanghai BMN and comparison to the state-of-the-art methods validate the effectiveness of DSLC in enhancing the robustness and mitigating the propagation of cascading failures. Moreover, DSLC achieves an average improvement of 25.54% in passenger flow loss compared to the suboptimal algorithms, providing valuable insights for traffic managers.

Suggested Citation

  • Li, Xianghua & Teng, Min & Jiang, Shihong & Han, Zhen & Gao, Chao & Nekorkin, Vladimir & Radeva, Petia, 2025. "A dynamic station-line centrality for identifying critical stations in bus-metro networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001158
    DOI: 10.1016/j.chaos.2025.116102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.