IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v193y2025ics0960077925001237.html
   My bibliography  Save this article

Coupling dynamics and synchronization mode in driven FitzHugh–Nagumo neurons

Author

Listed:
  • Bosco, Nivea D.
  • Manchein, Cesar
  • Rech, Paulo C.

Abstract

We introduce a novel four-dimensional continuous-time nonautonomous dynamical system formed by coupling two sinusoidally driven FitzHugh–Nagumo (FHN) neurons. The study investigates dynamical behaviors and synchronization properties under three distinct scenarios: (i) coupling two identical chaotic systems, (ii) coupling a periodic system with a chaotic system, and (iii) coupling two identical periodic systems. Synchronization is analyzed in detail for the first two scenarios. In case (i), coupling suppresses chaotic behavior, inducing periodic dynamics characterized by intricate discontinuous spirals and self-similar shrimp-shaped periodic structures. Case (ii) reveals shrimp-shaped periodic structures and regions of coexisting attractors, showcasing the multistability inherent in nonlinear systems. For these two scenarios, we explore the transition from asynchronous states to intermittent and nearly synchronized states, driven by increasing coupling strength. The emergence of synchronization is interpreted in terms of the interaction between individual neuron dynamics and coupling. In case (iii), coupling completely stabilizes periodic dynamics, leading to an uniform periodic regime without chaotic behavior. Across all scenarios, increasing coupling strength in nonautononous FHN neuron models induces a transition from eventual finite-time synchronization events to stable coupling-driven synchronized states. We also demonstrate that, for two-coupled nonautonomous FHN neurons, the individual dynamics play a less significant role in the synchronization process compared to previous findings in coupled autonomous neuron models. This work highlights the complex interplay of coupling and intrinsic individual nonautonomous FHN neuron dynamics.

Suggested Citation

  • Bosco, Nivea D. & Manchein, Cesar & Rech, Paulo C., 2025. "Coupling dynamics and synchronization mode in driven FitzHugh–Nagumo neurons," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001237
    DOI: 10.1016/j.chaos.2025.116110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.