IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v193y2025ics0960077925001171.html
   My bibliography  Save this article

The influence of higher-order structure on the synchronization path of the network

Author

Listed:
  • Zuo, Binghua
  • Dai, Lu
  • Long, Yongshang
  • Shen, Chuansheng
  • Zhang, Yicheng

Abstract

The influence of higher-order structures on network dynamic behaviors has gradually emerged as a significant focus in the field of network science. Among these behaviors, synchronization is a pivotal phenomenon. While existing studies primarily examine how higher-order structures affect synchronization types and thresholds, the dynamics of the synchronization process itself remain underexplored. In this work, we study the impact of higher-order BA network structures on ER random networks, specifically analyzing their effect on the synchronization path. Our findings reveal that introducing higher-order BA structures into ER random networks can either promote stepwise aggregation synchronization and hierarchical synchronization or suppress global synchronization, depending on the higher-order coupling strength. Moreover, as the higher-order coupling strength increases, when the higher-order BA network fails to synchronize, the ER structure can be employed to facilitate overall synchronization along the hierarchical synchronization path. The analysis presented in this paper reveals the complex influence of higher-order BA structures on network synchronization, offering new insights into the role of higher-order structures in network dynamics.

Suggested Citation

  • Zuo, Binghua & Dai, Lu & Long, Yongshang & Shen, Chuansheng & Zhang, Yicheng, 2025. "The influence of higher-order structure on the synchronization path of the network," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001171
    DOI: 10.1016/j.chaos.2025.116104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.