IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v193y2025ics0960077925000839.html
   My bibliography  Save this article

Coevolutionary dynamics of feedback-evolving games in structured populations

Author

Listed:
  • Wang, Qiushuang
  • Chen, Xiaojie
  • Szolnoki, Attila

Abstract

The interdependence between an individual strategy decision and the resulting change of environmental state is often a subtle process. Feedback-evolving games have been a prevalent framework for studying such feedback in well-mixed populations, yielding important insights into the coevolutionary dynamics. However, since real populations are usually structured, it is essential to explore how population structure affects such coevolutionary dynamics. Our work proposes a coevolution model of strategies and environmental state in a structured population depicted by a regular graph. We investigate the system dynamics, and theoretically demonstrate that there exist different evolutionary outcomes including oscillation, bistability, the coexistence of oscillation and dominance, as well as the coexistence of cooperation and defection. Our theoretical predictions are validated through numerical calculations. By using Monte Carlo simulations we examine how the number of neighbors influences the coevolutionary dynamics, particularly the size of the attractive domain of the replete environmental state in the cases of bistability or cooperation-defection coexistence. Specifically, in the case of bistability, a larger neighborhood size may be beneficial to save the environment when the environmental enhancement rate by cooperation/degradation rate by defection is high. Conversely, if this ratio is low, a smaller neighborhood size is more beneficial. In the case of cooperator-defector coexistence, environmental maintenance is basically influenced by individual payoffs. When the ratio of temptation minus reward versus punishment minus sucker’s payoff is high, a larger neighborhood size is more favorable. In contrast, when the mentioned ratio is low, a smaller neighborhood size is more advantageous.

Suggested Citation

  • Wang, Qiushuang & Chen, Xiaojie & Szolnoki, Attila, 2025. "Coevolutionary dynamics of feedback-evolving games in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925000839
    DOI: 10.1016/j.chaos.2025.116070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925000839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.