IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000645.html
   My bibliography  Save this article

Bidirectional long short-term memory attention neural network to estimate neural mass model parameters

Author

Listed:
  • Zhang, Hao
  • Yang, Changqing
  • Xu, Jingping
  • Yuan, Guanli
  • Li, Xiaoli
  • Gu, Guanghua
  • Cui, Dong

Abstract

Mild Cognitive Impairment (MCI) is a precursor stage of Alzheimer's disease. The effective utilization of electroencephalography (EEG) in the analysis of neuronal populations through mathematical models of the brain is imperative for the study of the neurophysiological mechanisms underlying MCI. The research performs multi-parameter reverse identification of EEG in patients with MCI by combining the neural network model and the Jansen-Rit Neural Mass Model (J&R model) and then studying the brain function problems of MCI patients. We proposed the Bidirectional Long Short-term Memory Attention (BiLSAT) model by integrating the Bidirectional Long Short-term Memory (BiLSTM) network with the Attention mechanism. The BiLSAT model is designed using an encoder-decoder architecture that combines the BiLSAT model with the J&R model through a loss function. We compared the BiLSAT model and the Unscented Kalman Filter (UKF) algorithm through multi-parameter experiments. Degradation experiments demonstrated that the BiLSTM module and the Attention module enhance the performance of the BiLSAT model. The results of the multi-parameter experiments showed that the BiLSAT model demonstrates higher accuracy in multi-parameter identification compared to the UKF algorithm. We used the BilSAT model to estimate the parameters of the EEG data of the healthy elderly group and the MCI group. The results showed that the excitatory-inhibitory balance in the brains of patients with MCI was dysfunctional. In this study, a novel inverse identification method for the J&R model is proposed. This method is intended to address the limitations of the conventional UKF algorithm, which has been observed to suffer from inaccurate multi-parameter identification. The proposed method offers a novel perspective for future research in this field.

Suggested Citation

  • Zhang, Hao & Yang, Changqing & Xu, Jingping & Yuan, Guanli & Li, Xiaoli & Gu, Guanghua & Cui, Dong, 2025. "Bidirectional long short-term memory attention neural network to estimate neural mass model parameters," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000645
    DOI: 10.1016/j.chaos.2025.116051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.