IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000475.html
   My bibliography  Save this article

Forecasting chaotic time series: Comparative performance of LSTM-based and Transformer-based neural network

Author

Listed:
  • Valle, João
  • Bruno, Odemir Martinez

Abstract

The complexity and sensitivity to initial conditions are the main characteristics of chaotic dynamical systems, making long-term forecasting a significant challenge. Deep learning, however, is a powerful technique that can potentially improve forecasting in chaotic time series. In this study, we explored the performance of modern neural network architectures in forecasting chaotic time series with different Lyapunov exponents. To accomplish this, we created a robust dataset composed of chaotic orbits with Lyapunov exponents ranging from 0.019 to 1.253 and used state-of-the-art neural network models for time series forecasting, including recurrent-based and transformer-based architectures. Our results show that LSTNet presents the best results in one-step-ahead and the recursive one-step-ahead forecasting for the majority of the time series in our dataset, enabling the prediction of chaotic time series with high Lyapunov exponent. Additionally, we observed that the sensitivity to initial conditions and complexity still affects the performance of the neural networks, decaying predictive power in time series with larger Lyapunov exponent.

Suggested Citation

  • Valle, João & Bruno, Odemir Martinez, 2025. "Forecasting chaotic time series: Comparative performance of LSTM-based and Transformer-based neural network," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000475
    DOI: 10.1016/j.chaos.2025.116034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.