IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000335.html
   My bibliography  Save this article

Rheostatic effect of a magnetic field on the onset of chaotic and periodic motions in a five-dimensional magnetoconvective Lorenz system

Author

Listed:
  • Siddheshwar, Pradeep G.
  • Suresh, Anoop
  • Kumar, M.S. Jagadeesh

Abstract

This paper deals with a weakly nonlinear study of two-dimensional Rayleigh–Bénard magnetoconvection using a simplified five-dimensional Lorenz model. The governing equations of the system are nondimensionalized and formulated in terms of the stream function and the scalar magnetic potential. A five-modal Fourier truncation scheme is employed and the resulting equations are scaled to obtain a five-dimensional autonomous dynamical system. The Hopf-Rayleigh number, signifying Hopf bifurcation, is numerically evaluated from the analysis of weakly nonlinear stability. Chaotic and periodic motions are depicted by plotting bifurcation diagrams, largest Lyapunov exponent (LLE) diagrams and three-dimensional projections of the phase-space. For a fixed set of parameter values, increasing the strength of the applied magnetic field is found to increase the Hopf-Rayleigh number, thereby delaying the destabilization of the system’s equilibrium points. It is shown that while low magnetic field strengths favor the onset of chaotic motion directly from the steady state, stronger magnetic field strengths favor the onset of periodic convection from the steady state prior to the appearance of chaotic motion. We observe here that the applied magnetic field regulates the onset of chaotic and periodic motions in the system and therefore, has a rheostatic control over chaotic and periodic behaviors.

Suggested Citation

  • Siddheshwar, Pradeep G. & Suresh, Anoop & Kumar, M.S. Jagadeesh, 2025. "Rheostatic effect of a magnetic field on the onset of chaotic and periodic motions in a five-dimensional magnetoconvective Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000335
    DOI: 10.1016/j.chaos.2025.116020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.