IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000220.html
   My bibliography  Save this article

Fractional-order gradient approach for optimizing neural networks: A theoretical and empirical analysis

Author

Listed:
  • Harjule, Priyanka
  • Sharma, Rinki
  • Kumar, Rajesh

Abstract

This article proposes a modified fractional gradient descent algorithm to enhance the learning capabilities of neural networks, comprising the benefits of a metaheuristic optimizer. The use of fractional derivatives, which possess memory properties, offers an additional degree of adaptability to the network. The convergence of the fractional gradient descent algorithm, incorporating the Caputo derivative in the neural network’s backpropagation process, is thoroughly examined, and a detailed convergence analysis is provided which indicates that it enables a more gradual and controlled adaptation of the network to the data. Additionally, the optimal fractional order has been found for each dataset, a contribution that has not been previously explored in the literature, which has a significant impact on the training of neural networks with fractional gradient backpropagation. In the experiments, four classification datasets and one regression dataset were used, and the results consistently show that the proposed hybrid algorithm achieves faster convergence across all cases. The empirical results with the proposed algorithm are supported by theoretical convergence analysis. Empirical results demonstrate that the proposed optimizer with optimal order yields more accurate results compared to existing optimizers.

Suggested Citation

  • Harjule, Priyanka & Sharma, Rinki & Kumar, Rajesh, 2025. "Fractional-order gradient approach for optimizing neural networks: A theoretical and empirical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000220
    DOI: 10.1016/j.chaos.2025.116009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.