IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000104.html
   My bibliography  Save this article

A novel Riemann–Hilbert formulation-based reduction method to an integrable reverse-space nonlocal Manakov equation and its applications

Author

Listed:
  • Wu, Jianping

Abstract

In this paper, a novel Riemann–Hilbert (RH) formulation-based reduction method is developed for an integrable reverse-space nonlocal Manakov equation. Firstly, the scattering-data constraints of the reverse-space nonlocal Manakov equation are shown to be difficult to determine via the traditional RH method. Secondly, to obtain the scattering-data constraints of the reverse-space nonlocal Manakov equation, the traditional RH method is extended to an improved version which we call a novel RH formulation-based reduction method. Specifically, utilizing the RH formulation-based reduction method, the scattering-data constraints of the reverse-space nonlocal Manakov equation are determined to guarantee the required nonlocal symmetry reduction of the two-component Ablowitz–Kaup–Newell–Segur (AKNS) system. Moreover, the scattering-data constraints of the reverse-space nonlocal Manakov equation are compared with those of the Manakov equation. Thirdly, N-soliton solutions of the reverse-space nonlocal Manakov equation are obtained by imposing the obtained scattering-data constraints in those of the two-component AKNS system. Furthermore, the applications of our novel RH formulation-based reduction method are confirmed by applying it to another integrable nonlocal Manakov equation of reverse-spacetime type. Moreover, the scattering-data constraints of the reverse-spacetime nonlocal Manakov equation are further compared with those of the reverse-space nonlocal Manakov equation and the Manakov equation, respectively. Additionally, the nonlinear soliton features of the reverse-space nonlocal Manakov equation and the reverse-spacetime nonlocal Manakov equation are analyzed and classified in detail, respectively, according to different spectral parameter selections.

Suggested Citation

  • Wu, Jianping, 2025. "A novel Riemann–Hilbert formulation-based reduction method to an integrable reverse-space nonlocal Manakov equation and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000104
    DOI: 10.1016/j.chaos.2025.115997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.115997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.