IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000074.html
   My bibliography  Save this article

Bifurcations in a Leslie–Gower predator–prey model with strong Allee effects and constant prey refuges

Author

Listed:
  • Chen, Fengde
  • Li, Zhong
  • Pan, Qin
  • Zhu, Qun

Abstract

In this paper, we study a Leslie–Gower predator–prey model with strong Allee effects and constant prey refuges. It is shown that the model can undergo a cusp type degenerate Bogdanov–Takens bifurcation of codimension 4, focus and elliptic types degenerate Bogdanov–Takens bifurcations of codimension 3, and degenerate Hopf bifurcation of codimension 3 as the parameters vary. The model can exhibit the coexistence of multiple positive steady states, multiple limit cycles, and homoclinic loops. Our results indicate that a larger prey refuge contributes to the coexistence of both species. Numerical simulations, including three limit cycles, quadristability, a large-amplitude limit cycle enclosing three positive steady states and a homoclinic loop, two large-amplitude limit cycles enclosing three positive steady states, are presented to illustrate the theoretical results.

Suggested Citation

  • Chen, Fengde & Li, Zhong & Pan, Qin & Zhu, Qun, 2025. "Bifurcations in a Leslie–Gower predator–prey model with strong Allee effects and constant prey refuges," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000074
    DOI: 10.1016/j.chaos.2025.115994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.115994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.