IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000025.html
   My bibliography  Save this article

Fractal information density

Author

Listed:
  • Ratsaby, Joel

Abstract

Fractal sets are generated by simple generating formulas (iterated functions) and therefore have an almost zero algorithmic (Kolmogorov) complexity. Yet when observed as data with no knowledge of the iterated function, for instance, when observing pixel values of any region of a fractal image, the fractal set is very complex. It has rich and complicated patterns that appear at any arbitrary level of magnification. This suggests that fractal sets have a rich information content despite their essentially zero algorithmic complexity. This highlights a significant gap between algorithmic complexity of sets and their information richness. To explain this, we propose an information-based complexity measure of fractal sets. We extend a well-known notion of compression ratio of general binary sequences to two-dimensional sets and apply it to fractal sets. We introduce a notion of set information density and boundary information density, and as an application, we estimate them for two well-known fractal sets.

Suggested Citation

  • Ratsaby, Joel, 2025. "Fractal information density," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000025
    DOI: 10.1016/j.chaos.2025.115989
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.115989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.