IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077924014887.html
   My bibliography  Save this article

Indirect information propagation model with time-delay effect on multiplex networks

Author

Listed:
  • Zhang, Zehui
  • Zhu, Kangci
  • Wang, Fang

Abstract

Epidemics pose a significant threat to humanity. During the early stages of an outbreak, individuals often lack comprehensive or timely access to disease-related information. The primary mode of information propagation is indirect, primarily originating from friends or their extended networks. The primary mode of information propagation is indirect, primarily originating from friends or their extended networks. Additionally, the spread of information is influenced by the incubation period of infected individuals. In this study, we develop a novel information–disease coupled propagation model, integrating both indirect information transmission and individual disease incubation periods into the dynamics of information–disease interaction on multiplex networks. It is called time-delay ID-CIP. We derive the epidemic outbreak threshold using a microscopic Markov chain approach and compare our model with classical pairwise interaction propagation and recent higher-order models. The findings suggest that the proposed information propagation mechanism is more effective in suppressing disease spread. Numerical simulations reveal that prior to an outbreak, awareness density converges to zero in the steady state, helping prevent epidemic-related rumor propagation. The disease’s incubation period has no effect on the density of the infected population in the steady state; however, it significantly impacts the density of individual’s epidemic-related awareness.

Suggested Citation

  • Zhang, Zehui & Zhu, Kangci & Wang, Fang, 2025. "Indirect information propagation model with time-delay effect on multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077924014887
    DOI: 10.1016/j.chaos.2024.115936
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924014887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077924014887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.