IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics096007792401511x.html
   My bibliography  Save this article

Investigation of in vitro neuronal activity processing using a CMOS-integrated ZrO2(Y)-based memristive crossbar

Author

Listed:
  • Koryazhkina, M.N.
  • Lebedeva, A.V.
  • Pakhomova, D.D.
  • Antonov, I.N.
  • Razin, V.V.
  • Budylina, E.D.
  • Belov, A.I.
  • Mikhaylov, A.N.
  • Konakov, A.A.

Abstract

The influence of the epileptiform neuronal activity on the response of a CMOS-integrated ZrO2(Y)-based memristive crossbar and its conductivity was studied. Epileptiform neuronal activity was obtained in vitro in the hippocampal slices of laboratory mice using 4-aminopyridine experimental model. Synaptic plasticity of the memristive crossbar induced by epileptiform neuronal activity pulses was detected. Qualitatively, the results obtained in the case of normal (without pathologies) and epileptiform neuronal activity with and without noise coincide. For quantitative analysis, the value of the relative change in synaptic weight has been calculated for such important biological mechanisms of synapses as paired-pulse facilitation/depression, post-tetanic potentiation/depression, and long-term potentiation/depression. It has been shown that average value of the relative change in synaptic weight and its scatter are smaller mainly in the case of epileptiform neuronal activity pulses. An effect of the influence of noise included in the neuronal activity was found, which consists in the fact that the current response of the memristive crossbar is smaller in the presence of noise. The results of this study can be used in the development of new generation hardware-implemented computing devices with high performance and energy efficiency for the tasks of restorative medicine and robotics. In particular, using these results, neurohybrid devices can be developed for processing epileptiform activity in real time and for its suppression.

Suggested Citation

  • Koryazhkina, M.N. & Lebedeva, A.V. & Pakhomova, D.D. & Antonov, I.N. & Razin, V.V. & Budylina, E.D. & Belov, A.I. & Mikhaylov, A.N. & Konakov, A.A., 2025. "Investigation of in vitro neuronal activity processing using a CMOS-integrated ZrO2(Y)-based memristive crossbar," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s096007792401511x
    DOI: 10.1016/j.chaos.2024.115959
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792401511X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s096007792401511x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.