IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924014930.html
   My bibliography  Save this article

Modeling of a light-fueled liquid crystal elastomer-steered self-wobbling tumbler

Author

Listed:
  • Wu, Haiyang
  • Qiu, Yunlong
  • Li, Kai

Abstract

Self-sustaining motion offers notable advantages, including utilizing environmental energy, autonomy, and ease of control, which provide significant application potential in fields such as soft robotics, energy harvesting, and actuators. The key to developing self-sustaining systems often lies in designing mechanisms that enable the system to deviate from equilibrium under specific conditions and automatically return. Inspired by the self-recovery characteristics of tumbler toys, we propose a self-wobbling tumbler system by introducing light-driven changes in balance. The self-wobbling tumbler system consists of a wheel, a liquid crystal elastomer (LCE) fiber, a spring, a mass block, and steady illumination. The LCE fiber contracts in light and relaxes out of light, raising or lowering the system's center of gravity, resulting in continuous self-wobbling. Based on the photothermally responsive LCE model, we develop a theoretical model for the self-wobbling tumbler and derive its governing dynamic equations. The theoretical results show that the self-wobbling behavior is affected by the heat flux, the contraction coefficient, the rotational friction coefficient, the mass, the thermal characteristic time, and critical angle. The LCE-steered self-wobbling tumbler features advantages such as a simple structure, adjustable size, and ease of fabrication, and the theoretical results provide guidance for its applications in the fields of soft robotics, intelligent actuators, and adaptive materials.

Suggested Citation

  • Wu, Haiyang & Qiu, Yunlong & Li, Kai, 2025. "Modeling of a light-fueled liquid crystal elastomer-steered self-wobbling tumbler," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014930
    DOI: 10.1016/j.chaos.2024.115941
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924014930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.