IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924014917.html
   My bibliography  Save this article

CPS-IoT-PPDNN: A new explainable privacy preserving DNN for resilient anomaly detection in Cyber-Physical Systems-enabled IoT networks

Author

Listed:
  • Saheed, Yakub Kayode
  • Misra, Sanjay

Abstract

The integration of Cyber-Physical Systems (CPS) within the Internet of Things (IoT) ecosystem has transformed various sectors, enabling intelligent, interconnected environments that blend computational and physical processes. However, the security and privacy vulnerabilities within CPS-IoT networks remain critical, as anomalies can lead to severe, system-wide consequences. To address these challenges, this research introduces a novel, explainable, privacy-preserving Deep Neural Network (DNN) framework for anomaly detection in CPS-enabled IoT networks. While deep learning models are widely used in Intrusion Detection Systems (IDSs) for their capability to analyze vast data sources, their high false-positive rates and lack of interpretability present limitations. Our framework, therefore, employs a deep SHpley Additive exPlanations (SHAP) technique to clarify the DNN's decision-making process, aiding users and cybersecurity experts in validating and reinforcing the system's resilience. This approach was tested on two state-of-the-art datasets—Edge-IIoTset and X-IIoTID—demonstrating outstanding results. For binary classification, both datasets achieved 100 % accuracy, precision, recall, and F1-score, while multi-class scenarios reached nearly perfect metrics, with Edge-IIoTset achieving 99.98 % accuracy and X-IIoTID achieving 99.99 %. Additionally, our model showed significantly faster training times without compromising testing efficiency. The results confirm that this proposed explainable DNN framework offers robust, real-time, and privacy-preserving intrusion detection, enhancing CPS-IoT networks' defenses against advanced cyber threats.

Suggested Citation

  • Saheed, Yakub Kayode & Misra, Sanjay, 2025. "CPS-IoT-PPDNN: A new explainable privacy preserving DNN for resilient anomaly detection in Cyber-Physical Systems-enabled IoT networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014917
    DOI: 10.1016/j.chaos.2024.115939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924014917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.