IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924014656.html
   My bibliography  Save this article

Gaussian Process Phase Interpolation for estimating the asymptotic phase of a limit cycle oscillator from time series data

Author

Listed:
  • Yamamoto, Taichi
  • Nakao, Hiroya
  • Kobayashi, Ryota

Abstract

Rhythmic activity commonly observed in biological systems, occurring from the cellular level to the organismic level, is typically modeled as limit cycle oscillators. Phase reduction theory serves as a useful analytical framework for elucidating the synchronization mechanism of these oscillators. Essentially, this theory describes the dynamics of a multi-dimensional nonlinear oscillator using a single variable called asymptotic phase. In order to understand and control the rhythmic phenomena in the real world, it is crucial to estimate the asymptotic phase from the observed data. In this study, we propose a new method, Gaussian Process Phase Interpolation (GPPI), for estimating the asymptotic phase from time series data. The GPPI method first evaluates the asymptotic phase on the limit cycle and subsequently estimates the asymptotic phase outside the limit cycle employing Gaussian process regression. Thanks to the high expressive power of Gaussian processes, the GPPI is capable of capturing a variety of functions. Furthermore, it is easily applicable even when the dimension of the system increases. The performance of the GPPI is tested by using simulation data from the Stuart-Landau oscillator and the Hodgkin–Huxley oscillator. The results demonstrate that the GPPI can accurately estimate the asymptotic phase even in the presence of high observation noise and strong nonlinearity. Additionally, the GPPI is demonstrated as an effective tool for data-driven phase control of a Hodgkin–Huxley oscillator. Thus, the proposed GPPI will facilitate the data-driven modeling of the limit cycle oscillators.

Suggested Citation

  • Yamamoto, Taichi & Nakao, Hiroya & Kobayashi, Ryota, 2025. "Gaussian Process Phase Interpolation for estimating the asymptotic phase of a limit cycle oscillator from time series data," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014656
    DOI: 10.1016/j.chaos.2024.115913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924014656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.