IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924014437.html
   My bibliography  Save this article

Time-delay neural network observer-based adaptive finite-time prescribed performance control for nonlinear systems with unknown time-delay

Author

Listed:
  • Zhao, Yuzhuo
  • Ma, Dan

Abstract

An adaptive finite-time prescribed performance control (FTPPC) strategy is considered based on the time-delay neural network (NN) observer for the uncertain nonlinear system with unknown time-delay. Unlike previous works, a time-delay NN state observer based on the existing NN state observer is proposed, which not only solves the problem of the linear observer being unable to accurately observe the system states, but also extends the NN state observer without the time-delay to the time-delay NN state observer for the nonlinear system with state time-delay. What is more, instead of traditional Krasovskii functionals, the finite covering lemma and the RBF NN are combined to approximate unknown nonlinear time-delay functions. In addition, an adaptive FTPPC method is proposed by using the finite-time performance function (FTPF), which ensures the dynamic performance of the system while ensures the steady-state performance of the system in finite time. Among them, the stability time can be arbitrarily given, which means it does not rely on any parameter value. Finally, the electromechanical system is utilized to verify the effectiveness of the proposed strategy.

Suggested Citation

  • Zhao, Yuzhuo & Ma, Dan, 2025. "Time-delay neural network observer-based adaptive finite-time prescribed performance control for nonlinear systems with unknown time-delay," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014437
    DOI: 10.1016/j.chaos.2024.115891
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924014437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.