IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924013262.html
   My bibliography  Save this article

The fractional nonlinear magnetoinductive impurity

Author

Listed:
  • Molina, Mario I.

Abstract

We study a one-dimensional split-ring resonator array containing a single linear/nonlinear magnetic impurity where the usual discrete Laplacian is replaced by a fractional one. In the absence of the impurity, the dispersion relation for magnetoinductive waves is obtained in closed form, with a bandwidth that decreases with a decrease in the fractional exponent. Next, by using lattice Green functions, we obtain the bound state energy and its spatial profile, as a function of the impurity strength. We demonstrate that, at large impurity strengths, the bound state energy becomes linear with impurity strength for both linear and nonlinear impurity cases. The transmission of plane waves is computed semi-analytical, showing a qualitative similarity between the linear and nonlinear impurity cases. Finally, we compute the amount of magnetic energy remaining at the impurity site after evolving the system from a completely initially localized condition at the impurity site. For both cases, linear and nonlinear impurities, it is found that for a fixed fractional exponent, there is trapping of magnetic energy, which increases with an increase in impurity strength. The trapping increases with a decreased fractional exponent for a fixed magnetic strength.

Suggested Citation

  • Molina, Mario I., 2025. "The fractional nonlinear magnetoinductive impurity," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924013262
    DOI: 10.1016/j.chaos.2024.115774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924013262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924013262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.