IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924012797.html
   My bibliography  Save this article

Optimizing Physics-Informed Neural Networks with hybrid activation functions: A comparative study on improving residual loss and accuracy using partial differential equations

Author

Listed:
  • Zafar, Husna
  • Ahmad,
  • Liu, Xiangyang
  • Sadiq, Muhammad Noveel

Abstract

Physics-informed neural networks have bridged the gap between traditional numerical and deep learning based approaches in scientific computing. However, they still face limitations regarding improving convergence, accuracy, and minimizing residual loss, where the activation function plays a crucial role. Traditional activation functions often undergo vanishing gradient problems during backpropagation, highlighting the need for better alternatives for efficient training of Physics Informed Neural Networks. In this paper, new hybrid activation functions were proposed which combine the salient characteristics of traditional activation functions. These activation functions were tested with different network hyperparameters on the Swift–Hohenberg equation, a leading tool for modeling pattern development and evolution in fields like thermal convection, fluid, and temperature dynamics, as well as the Burgers equation. Manual tuning of hyperparameters is employed to critically assess the behavior of new activation functions in different experimental settings. Results show that hybrid activation functions have better learning capabilities compared to traditional activation functions. The GaussSwish hybrid activation function, in particular, proved to be highly effective across different network settings, showing better learning ability in training models for complex problems. This research also reveals that not only activation function but residual points sampled through different Monte Carlo sequences also influence the performance of Physics Informed Neural Networks.

Suggested Citation

  • Zafar, Husna & Ahmad, & Liu, Xiangyang & Sadiq, Muhammad Noveel, 2025. "Optimizing Physics-Informed Neural Networks with hybrid activation functions: A comparative study on improving residual loss and accuracy using partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924012797
    DOI: 10.1016/j.chaos.2024.115727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924012797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.