IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip2s096007792401289x.html
   My bibliography  Save this article

Transition from circular to spiral waves and from Mexican hat to upside-down Mexican hat-solutions: The cases of local and nonlocal λ−ω reaction-diffusion-convection fractal systems with variable coefficients

Author

Listed:
  • El-Nabulsi, Rami Ahmad

Abstract

Nonlinear partial differential equations admitting traveling wave solutions play an important role in the description and analysis of real-life physical processes and nonlinear phenomena. In this study, we prove that the excitable λ−ωreaction-diffusion-convection system introduced by Kopell and Howard can exhibit, in fractal dimensions, a large variety of spatial patterns. We have considered two independent models: a local reaction-diffusion-convection model characterized by variable coefficients that are subject to particular power laws and a nonlocal reaction-diffusion model characterized by symmetric kernels and a variable diffusion coefficient. Each model is characterized by a number of motivating properties and features. In the 1st model, the amplitude is governed by a 2nd-order differential equation, whereas in the 2nd-model, the amplitude is governed by a 4th-order differential equation, which is, under some conditions, comparable to the Swift-Hohenberg equation with variable coefficients that arise in the study of pattern formation, which belongs to the family of extended Fisher-Kolmogorov stationary equations used to study pattern-forming systems in biological and chemical systems. We report the emergence of superstructures that are suppressed for fractal dimensions much less than unity. These superstructures include superspiral waves characterized by a circular symmetry detected in various oscillatory media and the emergence of reflection of waves that take place in non-uniform reaction-diffusion systems, besides the emergence of micro-spiral waves that emerge at the cellular level. A transition from spiral waves to perfectly rotating waves is observed, besides a transition from Mexican hat shaped solutions to upside-down Mexican hat shaped solutions. The domain size has a very strong impact on the rotational frequency of spiral and circular waves. These new phenomena associated with configuration patterns through a reaction-diffusion-convection system with different scales and characterized by variable coefficients can be applied for modeling a wide class of reaction-diffusion-convection problems. Supplementary properties have been obtained and discussed accordingly.

Suggested Citation

  • El-Nabulsi, Rami Ahmad, 2024. "Transition from circular to spiral waves and from Mexican hat to upside-down Mexican hat-solutions: The cases of local and nonlocal λ−ω reaction-diffusion-convection fractal systems with variable coef," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p2:s096007792401289x
    DOI: 10.1016/j.chaos.2024.115737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792401289X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p2:s096007792401289x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.