IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip2s0960077924012748.html
   My bibliography  Save this article

A novel fractional-order grey Euler prediction model and its application in short-term traffic flow

Author

Listed:
  • Song, Yuxin
  • Duan, Huiming
  • Cheng, Yunlong

Abstract

In intelligent transportation systems, short-term traffic flow prediction, as a core component, plays a crucial role in improving the operational efficiency and safety of the transportation system. To achieve accurate traffic flow prediction, a novel fractional-order grey Euler prediction model has been established. The new model utilizes the fractional-order accumulation technique and the characteristics of cycle truncation accumulated generating operation to develop a new fractional-order cycle truncation accumulating generation operator. By using this sequential operator for modeling, the new fractional-order operator can fully utilize new information promptly, reflect the dynamic and periodic characteristics of the traffic flow system, and flexibly capture short-term fluctuations in traffic flow data. By adjusting the parameters, the dynamic changes in the traffic flow system can be described more accurately. Meanwhile, the properties of this new fractional order operator are analyzed, the modeling conditions of this new sequential operator are verified, and the particle swarm algorithm is used to optimize the model parameters with the objective function of minimizing the average absolute percentage total error to improve the overall performance of the new model. Finally, the novel model is implemented to simulate and forecast traffic flow data on UK highways. Its performance is validated through a comprehensive analysis of traffic flows spanning three distinct periods, ensuring its robustness under varying traffic conditions. A comparative study with seven established grey prediction models reveals that our model surpasses them in both simulation and prediction outcomes, exhibiting remarkable stability and precision in both fitting and forecasting. Consequently, the integration of this new model into traffic flow analysis offers a potent tool to accurately depict traffic parameter trends, bolstering data adaptability and enhancing modeling capabilities significantly.

Suggested Citation

  • Song, Yuxin & Duan, Huiming & Cheng, Yunlong, 2024. "A novel fractional-order grey Euler prediction model and its application in short-term traffic flow," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p2:s0960077924012748
    DOI: 10.1016/j.chaos.2024.115722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p2:s0960077924012748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.