Author
Listed:
- Wang, Peipei
- Zheng, Xinqi
- Chen, Yuanming
- Xu, Yazhou
Abstract
Since 2019, major infectious disease outbreaks have placed tremendous pressure on global public health systems, triggering extensive research on the predictive modeling of infectious diseases. Cellular Automaton (CA) is primarily used in the spatial prediction of infectious diseases to establish a model to for simulating the interaction between different regions and the infection risk to simulate the transmission process of the disease and predict its development trend. However, CA models are governed by initial fixed rules and local interactions, and often fail to capture the complex dynamics of epidemic transmission, which are influenced by factors such as public behavior and government intervention. In view of these limitations, we propose a factorial simulation model for the spatial spread of epidemics, the CA-ABM, which divides agents into three categories–public, government, and hospital agents–to comprehensively express the macro factors that affect the development of epidemics. Agent-Based Modeling (ABM) influences the transition rules of the CA through agent choices, constraints and supporting behaviors. Focusing on the COVID-19 pandemic in mainland China from February 6 to March 20, 2020, we simulate its spread. The results showed an average improvement of 8.4 % in prediction accuracy, with few errors, RMSE under 200, and R2 values over 0.9 in most provinces, demonstrating strong macro-scale stability. This approach helps regions to understand influencing factors and enables targeted infection risk assessment and prevention. In addition, scenario analysis based on CA-ABM model changes epidemic decision-making from “prediction-response” to “scenario-response” and provides theoretical reference for future epidemic management.
Suggested Citation
Wang, Peipei & Zheng, Xinqi & Chen, Yuanming & Xu, Yazhou, 2024.
"A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling,"
Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
Handle:
RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401261x
DOI: 10.1016/j.chaos.2024.115709
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401261x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.