IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924012475.html
   My bibliography  Save this article

LMI synchronization conditions for variable fractional-order one-sided Lipschitz chaotic systems with gain fluctuations

Author

Listed:
  • Chen, Liping
  • Liu, Chuang
  • Lopes, António M.
  • Lin, Yong
  • Liu, Yingxiao
  • Chen, YangQuan

Abstract

This article addresses the synchronization of general variable fractional-order one-sided Lipschitz chaotic systems with norm-bounded time-varying parametric uncertainty. A non-fragile state feedback control scheme is designed to cope with uncertainties in the controller gain fluctuations, and a sufficient condition for master/slave synchronization and determination of the controller gain is derived and expressed as a linear matrix inequality. The new control approach is applicable to fractional-order Lipschitz chaotic systems as well as to integer-order systems. Additionally, compared with other existing schemes, the method is easier and less costly to implement in real-world applications. Three numerical examples are given to show the performance of the non-fragile control approach for synchronizing practical chaotic systems.

Suggested Citation

  • Chen, Liping & Liu, Chuang & Lopes, António M. & Lin, Yong & Liu, Yingxiao & Chen, YangQuan, 2024. "LMI synchronization conditions for variable fractional-order one-sided Lipschitz chaotic systems with gain fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012475
    DOI: 10.1016/j.chaos.2024.115695
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.