IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924012402.html
   My bibliography  Save this article

Cooperation dynamics of reputation-based manhattan distance social circle in spatial prisoner’s dilemma game in evolutionary game theory

Author

Listed:
  • Ma, Jinlong
  • Zhao, Hongfei

Abstract

Inspired by the complex interplay between reputation and social proximity, we propose a novel model called the Manhattan distance reputation circle, integrating nonlinear reputation mechanisms and interaction range within the spatial prisoner’s dilemma game. In this model, the average reputation of neighbors sharing the same strategy within a specific Manhattan distance is incorporated into the central node’s strategy update rule. Two rules are introduced to evaluate average reputation: rule A employs the standard averaging method, while rule B applies a distance-based decay, introducing a nonlinear weighting to the reputation, giving more influence to closer neighbors. Monte Carlo simulations reveal that the proposed model exhibits nonlinear dynamics that promote the emergence of cooperative strategies. Specifically, greater interaction range and reputation adjustment values enhance cooperation, although the impact of interaction range plateaus beyond a certain threshold. While both rules foster cooperation, rule B’s nonlinear reputation decay reduces the fluctuations in cooperation seen in rule A as α increases under high introduction rates in the model.

Suggested Citation

  • Ma, Jinlong & Zhao, Hongfei, 2024. "Cooperation dynamics of reputation-based manhattan distance social circle in spatial prisoner’s dilemma game in evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012402
    DOI: 10.1016/j.chaos.2024.115688
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.