IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924012281.html
   My bibliography  Save this article

Evolution of strategies in evolution games on small-world networks and applications

Author

Listed:
  • Liu, Chengyan
  • Lv, Wangyong
  • Cheng, Xinzexu
  • Wen, Yihao
  • Yang, Xiaofeng

Abstract

In the game-theoretic model of small-world networks, it is traditionally believed that participants randomly select neighbors to learn from. However, in the era of highly interconnected information, we can regard participants as highly rational individuals who can comprehensively consider the strategies of all their neighbors and adjust their own strategies accordingly to seek the best benefits. From this perspective, we utilize the small-world network model to depict the competitive relationship between participants and propose new strategy updating rules by introducing the Markov transition matrix, aiming to explore the specific impact of the small-world network structure on the cooperation rate of participants. Through simulation analysis, we observe that the behavior of the group tends to evolve towards strategies with higher returns. Among them, the number of neighbors in the network, the initial proportion of cooperative participants, and the potential irrational factor in the updating rules significantly affect the evolution speed of the cooperation rate. It is worth noting that the probability of random reconnection and the number of network nodes have no significant impact on the evolution trend of the cooperation rate. Furthermore, we apply this model to practical scenarios of bidding projects. Combined with a specific analysis of the bidding background, we find that reducing the number of adjacent edges and the initial proportion of cooperative participants are crucial factors in effectively reducing the cooperation rate. This discovery not only provides us with a new perspective to understand cooperative behavior in complex networks, but also offers valuable references for strategy making in actual bidding projects.

Suggested Citation

  • Liu, Chengyan & Lv, Wangyong & Cheng, Xinzexu & Wen, Yihao & Yang, Xiaofeng, 2024. "Evolution of strategies in evolution games on small-world networks and applications," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012281
    DOI: 10.1016/j.chaos.2024.115676
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.