IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s096007792401227x.html
   My bibliography  Save this article

Identifying influential nodes in social networks via improved Laplacian centrality

Author

Listed:
  • Zhu, Xiaoyu
  • Hao, Rongxia

Abstract

Identifying influential nodes in social networks has significant applications in terms of social analysis and information dissemination. How to capture the crucial features of influential nodes without increasing the computational complexity is an urgent issue to be solved in the context of big data. Laplacian centrality (LC) measures nodal influence by computing nodes' degree, making it extremely low complexity. However, there is still significant room for improvement. Consequently, we propose the improved Laplacian centrality (ILC) to identify influential nodes based on the concept of self-consistent. Identifying results on 9 real networks prove that ILC is superior to LC and other 6 classical measures in terms of ranking accuracy, top-k nodes identification and discrimination capability. Moreover, the computational complexity of ILC has not significantly increased compared to LC, and remains the linear order of magnitude O(m). Additionally, ILC has excellent robustness and universality such that there is no need to adjust parameters according to different network structures.

Suggested Citation

  • Zhu, Xiaoyu & Hao, Rongxia, 2024. "Identifying influential nodes in social networks via improved Laplacian centrality," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401227x
    DOI: 10.1016/j.chaos.2024.115675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792401227X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401227x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.