IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924012232.html
   My bibliography  Save this article

A non-singleton type-3 neuro-fuzzy fixed-time synchronizing method

Author

Listed:
  • Taghavifar, Hamid
  • Mohammadzadeh, Ardashir
  • Zhang, Chunwei

Abstract

This paper presents a synchronizing approach to chaotic systems with unknown nonlinear dynamics using a Gaussian non-singleton type-3 (NT3) fuzzy logic system (T3-FLS). The proposed method effectively addresses the challenges of parameter uncertainties and external disturbances by utilizing higher-order fuzzy approximations, thereby enhancing robustness and adaptability. By incorporating a projection operator, the control scenario ensures stability. The design includes a fixed-time adaptive synchronization technique that guarantees convergence in a predetermined time frame, independent of the initial values. The presented theoretical analysis proves the superiority of the designed synchronization approach, while simulations demonstrate significant improvements in synchronization performance and resilience against uncertainties. Specifically, the proposed method achieves root mean square errors of 0.1990 and 0.2754 for the tracking errors, representing improvements over 30% compared to the other benchmarking methods. These outcomes demonstrate the robustness of our proposed controller in handling chaotic systems under various operating conditions.

Suggested Citation

  • Taghavifar, Hamid & Mohammadzadeh, Ardashir & Zhang, Chunwei, 2024. "A non-singleton type-3 neuro-fuzzy fixed-time synchronizing method," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012232
    DOI: 10.1016/j.chaos.2024.115671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.