IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924012128.html
   My bibliography  Save this article

A fast matrix autoregression algorithm based on Tucker decomposition for online prediction of nonlinear real-time taxi-hailing demand without pre-training

Author

Listed:
  • Xu, Zhihao
  • Lv, Zhiqiang
  • Chu, Benjia
  • Li, Jianbo

Abstract

Online prediction of real-time taxi-hailing demand generally provides better real-time decision support for passengers and taxi drivers compared with offline prediction. Current studies focused on using deep spatial-temporal models to predict complex nonlinear taxi-hailing demand. However, whether these models can be used for online prediction of real-time taxi-hailing demand through online training or offline pre-training is hardly discussed. Generally, deep models are not lightweight enough for online training, and pre-training these models requires some time and computational resources. Therefore, a lightweight Fast Matrix Autoregression algorithm based on Tucker Decomposition (FMAR-TD) is proposed for online real-time training and prediction of nonlinear taxi-hailing demand without pre-training. The experimental results show that FMAR-TD achieves millisecond-level online prediction of real-time taxi-hailing demand. Compared with baselines, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of FMAR-TD marginally increase by 2.51 % and 2.56 %, while the computation time (sum of training time and prediction time) significantly reduces by 86.16 %. Open-source link: https://github.com/qdu318/FMAR-TD.

Suggested Citation

  • Xu, Zhihao & Lv, Zhiqiang & Chu, Benjia & Li, Jianbo, 2024. "A fast matrix autoregression algorithm based on Tucker decomposition for online prediction of nonlinear real-time taxi-hailing demand without pre-training," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012128
    DOI: 10.1016/j.chaos.2024.115660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.