IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924012086.html
   My bibliography  Save this article

Nonlinear harmonic resonant behaviors and bifurcation in a Two Degree-of-Freedom Duffing oscillator coupled system of Tension Leg Platform type Floating Offshore Wind Turbine

Author

Listed:
  • Su, Ouming
  • Li, Yan
  • Li, Guoyan
  • Cui, Yiwen
  • Li, Haoran
  • Wang, Bin
  • Meng, Hang
  • Li, Yaolong
  • Liang, Jinfeng

Abstract

The surge-heave coupled motion model of a Tension Leg Platform type Floating Offshore Wind Turbine (TLP FOWT) is first established. By taking the tendons stretching and platform set-down motion into consideration, the nonlinear model is a Duffing oscillator coupled system. We analyze the nonlinear feature in the surge-heave coupled motions by the semi-analytical algorithms in nonlinear dynamics. The harmonic balance method is applied to obtain the analytical solutions of the nonlinear system under wind and wave excitations. The analytical solution verifies the excellent accuracy. To further achieve the heave motion response, we organize the bifurcation analysis and discuss the effects of the dynamic parameters on the heave responses. The results reveal the multi components of heave motion, which consist of constant, primary harmonic resonate and higher order harmonic resonate. In addition, the change of dynamic parameters has various effects on the response. The increment of wave load leads to the expansion of heave response, and an instantaneous expansion appear. Both linear surge and heave damping only affect the amplitudes of heave motion. The nonlinear surge stiffness and heave stiffness can barely affect the primary harmonic resonance amplitudes, but they present different effects on the higher order harmonic resonance component.

Suggested Citation

  • Su, Ouming & Li, Yan & Li, Guoyan & Cui, Yiwen & Li, Haoran & Wang, Bin & Meng, Hang & Li, Yaolong & Liang, Jinfeng, 2024. "Nonlinear harmonic resonant behaviors and bifurcation in a Two Degree-of-Freedom Duffing oscillator coupled system of Tension Leg Platform type Floating Offshore Wind Turbine," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012086
    DOI: 10.1016/j.chaos.2024.115656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.