IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s096007792401186x.html
   My bibliography  Save this article

Diffusion-driven instabilities in a tri-trophic food web model: From Turing to non-Turing patterns and waves

Author

Listed:
  • Chakraborty, Bhaskar
  • Marick, Sounov
  • Bairagi, Nandadulal

Abstract

This work uses a reaction–diffusion system to explore self-organized pattern-forming phenomena through species distribution in a tri-trophic food web system. The interacting non-diffusive system involves a bottom prey, one specialist intermediate predator dependent on the bottom prey, and a generalist top predator, having its food preference regulation on both the bottom prey and intermediate predator. The system encounters temporal instability through Hopf-bifurcation and chaotic oscillations about the coexistence equilibrium with over-dependency on a particular food source. We provide analytical conditions for diffusion-driven Turing and wave instabilities. A weakly nonlinear analysis (WNA) is performed to examine the patterns of Turing instability close to the critical threshold. Numerical simulations show spatiotemporal patterns like spots, stripes, a mixture of spots & stripes and spatiotemporal chaos. The numerical investigations highlight the non-Turing instabilities consisting of Hopf, wave, Hopf-Turing, Hopf-wave. The diffusion of species suppresses regular and irregular spatiotemporal oscillations, giving stability to the system. Using a heat map of the Lyapunov exponents of the time series for different pairs of parameter values in a bi-parametric plane, it is demonstrated that the Turing pattern dominates the oscillatory Hopf pattern if the critical parameter value is from the Hopf-Turing region and is close to the Hopf bifurcation threshold, but the Hopf pattern dominates if the parameter pair is significantly away from it. The qualitative comparison of the non-Turing instabilities is provided with the corresponding spatiotemporal distribution of the species. It is observed that the high-amplitude oscillations of Hopf and Hopf-dominated non-Turing oscillations are vicious for the spatially distributed population.

Suggested Citation

  • Chakraborty, Bhaskar & Marick, Sounov & Bairagi, Nandadulal, 2024. "Diffusion-driven instabilities in a tri-trophic food web model: From Turing to non-Turing patterns and waves," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401186x
    DOI: 10.1016/j.chaos.2024.115634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792401186X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401186x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.