IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s096007792401172x.html
   My bibliography  Save this article

Nonlinear chaotic Lorenz-Lü-Chen fractional order dynamics: A novel machine learning expedition with deep autoregressive exogenous neural networks

Author

Listed:
  • Hassan, Shahzaib Ahmed
  • Raja, Muhammad Junaid Ali Asif
  • Chang, Chuan-Yu
  • Shu, Chi-Min
  • Shoaib, Muhammad
  • Kiani, Adiqa Kausar
  • Raja, Muhammad Asif Zahoor

Abstract

This exhaustive study entails fractional processing of the unified chaotic Lorenz-Lü-Chen attractors using machine learning expedition with Levenberg-Marquardt optimized deep nonlinear autoregressive exogenous neural networks (NARX-NNs-LM). The fractional Lorenz-Lü-Chen attractors (FLLCA) system is unified by three Caputo-based fractional differential equations reflecting Lorenz, Lü, Chen attractors exacted by the single control parameter. The Fractional Adams-Bashforth-Moulton predictor-corrector method is efficaciously employed for the FLLCA models for different variation of fractional orders to generate synthetic datasets for temporal anticipation and processing. Acquired datasets of FLLCA systems were arbitrarily split into a training, validation and test sets for the execution of nonlinear autoregressive exogenous neural networks optimized sequentially using the Levenberg-Marquardt algorithm. This refined NARX-NNs-LM strategy is validated across the reference numerical solutions via scrutiny on mean square error (MSE) convergence graphs, error histograms, regression indices, error autocorrelations, error input autocorrelations and time series response on exhaustive experimentation study on FLLCA systems. The predictive strength of the NARX-NNs-LM strategy is analyzed by means of step-ahead and multistep ahead predictors. Diminutive error metrics on sundry FLLCA scenarios reflect the expert utilization of NARX-NNs-LM for the precise examination, anticipation and forecasting of nonlinear chaotic fractional attractors.

Suggested Citation

  • Hassan, Shahzaib Ahmed & Raja, Muhammad Junaid Ali Asif & Chang, Chuan-Yu & Shu, Chi-Min & Shoaib, Muhammad & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor, 2024. "Nonlinear chaotic Lorenz-Lü-Chen fractional order dynamics: A novel machine learning expedition with deep autoregressive exogenous neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401172x
    DOI: 10.1016/j.chaos.2024.115620
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792401172X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401172x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.