IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s096007792401169x.html
   My bibliography  Save this article

Pseudo-phase difference guides additional connection between oscillators for synchrony

Author

Listed:
  • Lee, Daekyung
  • Park, Jong-Min
  • Kim, Heetae

Abstract

In complex systems, synchronization plays a pivotal role underlying the coherent operation of various systems (networks) ranging from biology to technology. In a dynamic network, a link between nodes can be newly created implementing a new interaction in the network. Therefore, it is of great importance to understand how to enhance the synchronized state of a system especially when adding a new connection. This study investigates ways to enhance synchronization through optimal link addition, employing the Synchrony Alignment Function (SAF) and Adjusted Lyapunov Function (ALF) that assess the effects of new connections. By applying the ALF method to compare potential link additions, we identify two key factors that contribute to the effectiveness of link addition: the steady-state phase in the linearized dynamics, which we named the pseudo-steady-state phase, and the structural attributes of the network. By applying these methods across diverse network topologies, including Barabási–Albert, Erdős–Rényi, and Cayley tree models, we uncover the dominant role of the phase difference in promoting synchronization. This exploration offers new insights into the dynamics of network synchronization, highlighting the critical impact of specific factors on the efficacy of enhancing network coherence. Our findings also lay a foundation for further research into targeted strategies for network optimization.

Suggested Citation

  • Lee, Daekyung & Park, Jong-Min & Kim, Heetae, 2024. "Pseudo-phase difference guides additional connection between oscillators for synchrony," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401169x
    DOI: 10.1016/j.chaos.2024.115617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792401169X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401169x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.