IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924011676.html
   My bibliography  Save this article

Subcombination internal resonance of the additive type in the response dynamics of micromachined resonators crossing the impacting threshold

Author

Listed:
  • Ruzziconi, Laura
  • Jaber, Nizar
  • Hajjaj, Amal Z.
  • Younis, Mohammad I.

Abstract

In the present paper, a microbeam-based MEMS device is experimentally driven to experience a subcombination internal resonance (IR) of the additive type, where the second mode internally resonates with both the first and the third modes inducing a range of quasi-periodic dynamics. The main features of the experimental quasi-periodicity are analyzed, which inherently depend on the ratios established by the frequencies of the involved modes. Experimental Poincaré maps are established and tracked, exhibiting a specific underlying pattern. Numerical simulations are developed and the Fast Fourier Transform frequency trend lines are examined, showing the variations of the modes frequencies values while keeping the subcombination IR relationship. We investigate the evolution of the quasi-periodic waveform as increasing the excitation frequency. Special attention is devoted to the hardening dominance of the system, which influences the modes frequencies components. The last part of the paper is focused on the impacting regime. Since the microbeam is constituted by a dielectric layer (Silicon Nitride), impacts take place as raising the oscillation amplitudes. We analyze the experimental behavior at impacts, showing the possibility of dynamics with different characteristics, including both quasi-periodic, chaotic and periodic regions, all of them holding subcombination IR signature.

Suggested Citation

  • Ruzziconi, Laura & Jaber, Nizar & Hajjaj, Amal Z. & Younis, Mohammad I., 2024. "Subcombination internal resonance of the additive type in the response dynamics of micromachined resonators crossing the impacting threshold," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011676
    DOI: 10.1016/j.chaos.2024.115615
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.