IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924011445.html
   My bibliography  Save this article

Integrating Virtual and Physical Interactions through higher-order networks to control epidemics

Author

Listed:
  • Lamata-Otín, Santiago
  • Reyna-Lara, Adriana
  • Gómez-Gardeñes, Jesús

Abstract

In the context of our increasingly digitalized society, virtual interactions have become integral to daily communication, complementing traditional face-to-face interactions. These digital pathways, however, are often overlooked in the context of epidemic control, particularly in Digital Contact Tracing, where adoption rates of tailored wearable applications for this purpose remain suboptimal. This study elucidates the key role of the virtual environment in managing infectious disease outbreaks. We develop an integrated framework that combines various detection strategies to assess the efficacy of virtual tools in bending epidemic waves, analogous to conventional Contact Tracing approaches. Our analysis extends to the dynamics of higher-order interactions — characteristic of virtual platforms — and their contribution to epidemic control. Furthermore, we investigate the interplay between physical and virtual interactions, that aligned interactions optimize epidemic control in daily routine scenarios. Our findings underscore the critical role of virtual interactions in epidemic management, suggesting that current societal structures inherently support innovative detection and control strategies.

Suggested Citation

  • Lamata-Otín, Santiago & Reyna-Lara, Adriana & Gómez-Gardeñes, Jesús, 2024. "Integrating Virtual and Physical Interactions through higher-order networks to control epidemics," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011445
    DOI: 10.1016/j.chaos.2024.115592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.