IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924011433.html
   My bibliography  Save this article

Transition and coexistence of Turing pattern, Turing-like pattern and spiral waves in a discrete-time predator–prey model

Author

Listed:
  • Zhang, Huimin
  • Gao, Jian
  • Gu, Changgui
  • Shen, Chuansheng
  • Yang, Huijie

Abstract

Turing patterns and spiral waves, which are spatiotemporal ordered structures, are a common occurrence in complex systems, manifesting in a variety of forms. Investigations on these two types of patterns primarily concentrate on different systems or different parameter ranges, respectively. Turing’s theory, which postulates the presence of both a long-range inhibitor and a short-range activator, is used to explain the variety of Turing patterns in nature. Generally, Turing patterns are the result of Turing instability (including subcritical Turing instability), and research in this field is usually conducted within the parameter regions of Turing instability. Here, we observed the transition and coexistence phenomena of Turing pattern, Turing-like pattern and spiral wave, and discovered a mechanism for generating Turing-like patterns in discrete-time systems. Specifically, as the control parameter changes, the spiral wave gradually loses its dominant position and is eventually replaced by the Turing-like pattern, experiencing a state of coexistence of Turing/Turing-like pattern and spiral wave. The decrease in the move-state-effects results in the system’s incapacity to generate spiral waves, which are ultimately replaced by Turing/Turing-like patterns. Outside the parameter intervals of Turing instability, we obtained a type of Turing-like patterns in a discrete-time model. The patterns can be excited through the application of a strong impulse noise (exceeding a threshold) to a homogeneous stable state. Analysis reveals that the Turing-like patterns are the consequence of the competition between two stable states, and the excitation threshold is determined by the relative position of the states. Our findings shed light on the pattern formation for Turing/Turing-like patterns and spiral waves in discrete-time systems, and reflect the diversity of mechanisms behind emergence and self-organization.

Suggested Citation

  • Zhang, Huimin & Gao, Jian & Gu, Changgui & Shen, Chuansheng & Yang, Huijie, 2024. "Transition and coexistence of Turing pattern, Turing-like pattern and spiral waves in a discrete-time predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011433
    DOI: 10.1016/j.chaos.2024.115591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.