IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010889.html
   My bibliography  Save this article

Convolutional neural network for high-performance reservoir computing using dynamic memristors

Author

Listed:
  • Byun, Yongjin
  • So, Hyojin
  • Kim, Sungjun

Abstract

In the rapidly advancing field of neuromorphic computing, W/ZnO/TiN resistive random-access memory (RRAM) devices have emerged as a next-generation computational building block. Our findings reveal the significant role played by the thickness of the ZnO layer in determining the electrical properties essential for data storage and neuromorphic applications. The short-term memory (STM) capabilities, which are critical for processing temporal information, are closely examined alongside their potential to simulate biological synaptic functions through multilevel conductance states and synaptic behaviors such as paired-pulse facilitation. Integrating these devices into reservoir computing systems enhances pattern recognition and accelerates learning, which demonstrates their utility in sequential data processing. In addition, conductance modulation via pulse width adjustment is a novel strategy to optimize memory device performance. By showcasing the effectiveness of W/ZnO/TiN devices in neuromorphic computing through high-accuracy image recognition tasks, our study highlights their foundational role in advancing neuromorphic computing technologies. The adaptability, learning capabilities, and efficiency of these devices underscore their potential for developing hardware-based neuromorphic systems that are capable of complex data processing.

Suggested Citation

  • Byun, Yongjin & So, Hyojin & Kim, Sungjun, 2024. "Convolutional neural network for high-performance reservoir computing using dynamic memristors," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010889
    DOI: 10.1016/j.chaos.2024.115536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.