IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009780.html
   My bibliography  Save this article

Nonlinear stability analysis of thermal convection in a fluid layer with slip flow and general temperature boundary condition

Author

Listed:
  • Tripathi, Vinit Kumar
  • Maurya, Rahul Kumar
  • Mahajan, Amit

Abstract

The current article presents a comprehensive analysis of the influence of inconstant viscosity into thermal convection, incorporating the influence of generalized velocity (slip boundary condition) and temperature boundary conditions (physically represent imperfectly conducting boundary) within a fluid layer. Slip boundary conditions are often considered more practical than no-slip conditions (Neto et al. (2003)). Therefore, in the present work, slip boundary condition is used to discuss the effect of temperature and pressure dependent viscosity. Both linear and nonlinear stability analyses are explored, revealing a noteworthy finding: the precise alignment of the nonlinear stability boundary with the linear instability threshold. Additionally, the exchange of stability is illustrated, indicating that convection exclusively manifests in a stationary mode. The findings are derived across a spectrum of boundary scenarios, ranging from free-free to rigid-free, and rigid-rigid boundaries, encompassing both isothermal and adiabatic conditions. Notably, the slip length parameter exhibits a destabilizing effect, while convection is observed to occur more swiftly under adiabatic boundary conditions compared to isothermal conditions. The Chebyshev pseudo-spectral technique is applied to solve the eigenvalue problems obtained from linear and nonlinear stability analysis.

Suggested Citation

  • Tripathi, Vinit Kumar & Maurya, Rahul Kumar & Mahajan, Amit, 2024. "Nonlinear stability analysis of thermal convection in a fluid layer with slip flow and general temperature boundary condition," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009780
    DOI: 10.1016/j.chaos.2024.115426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.