IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009548.html
   My bibliography  Save this article

Semi-visual obfuscation image encryption algorithm based on π-type chaotic amplifier and self-hiding fuzzy

Author

Listed:
  • Du, Longbiao
  • Teng, Lin

Abstract

The level of privacy may vary across different parts of an image. This paper proposes a semi-visual obfuscation algorithm for images that takes into account the varying levels of privacy in different areas of the image. Firstly, we present a novel One-dimensional Uniform Chaotic Amplifier (1_DUCA) aimed at expanding the parameter range and enhancing the uniformity of the standard one-dimensional chaotic map. Next, we employ a detection algorithm or autonomous frame selection to identify the precise location of the area with strong privacy. Finally, we apply noise to blur the selected area and conceal vital bit information within the image. At this point, the image has certain visual effects, and only people with prior knowledge can recognize the image. Furthermore, in the last stage of image encryption, we employ a weight scrambling and high-low bit coupled diffusion technology to completely obscure the visual effects of the image. It is noteworthy that the experimental results and performance analysis have verified the practicality and security of the encryption algorithm. Moreover, they have also demonstrated the robust amplification effect of the employed amplifier.

Suggested Citation

  • Du, Longbiao & Teng, Lin, 2024. "Semi-visual obfuscation image encryption algorithm based on π-type chaotic amplifier and self-hiding fuzzy," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009548
    DOI: 10.1016/j.chaos.2024.115402
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.