IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924008087.html
   My bibliography  Save this article

Matrix centrality for annotated hypergraphs

Author

Listed:
  • Vasilyeva, E.
  • Samoylenko, I.
  • Kovalenko, K.
  • Musatov, D.
  • Raigorodskii, A.M.
  • Boccaletti, S.

Abstract

The identification of central nodes within networks constitutes a task of fundamental importance in various disciplines, and it is an extensively explored problem within the scientific community. Several scalar metrics have been proposed for classic networks with dyadic connections, and many of them have later been extended to networks with higher-order interactions. We here introduce two novel measures for annotated hypergraphs: that of matrix centrality and that of role centrality. These concepts are formulated for hypergraphs where the roles of nodes within hyper-edges are explicitly delineated. Matrix centrality entails the assignment of a matrix to each node, whose dimensions are determined by the size of the largest hyper-edge in the hypergraph and the number of roles defined by the annotated hypergraph’s labeling function. This formulation facilitates the simultaneous ranking of nodes based on both hyper-edge size and role type. The second concept, role centrality, involves assigning a vector to each node, the dimension of which equals the number of roles specified. This metric enables the identification of pivotal nodes across different roles without distinguishing hyper-edge sizes. Through the application of these novel centrality measures to a range of synthetic and real-world examples, we demonstrate their efficacy in providing enhanced insights into the structural characteristics of the systems under consideration.

Suggested Citation

  • Vasilyeva, E. & Samoylenko, I. & Kovalenko, K. & Musatov, D. & Raigorodskii, A.M. & Boccaletti, S., 2024. "Matrix centrality for annotated hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008087
    DOI: 10.1016/j.chaos.2024.115256
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924008087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.