IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924007446.html
   My bibliography  Save this article

ENIMNR: Enhanced node influence maximization through node representation in social networks

Author

Listed:
  • Wei, Pengcheng
  • Zhou, Jiahui
  • Yan, Bei
  • Zeng, Yushan

Abstract

The influence maximization problem grapples with issues such as low infection rates and high time complexity. Many existing methods prove unsuitable for large-scale networks due to their time complexity or heavy reliance on free parameters. This paper introduces a solution to these challenges through a local heuristic that incorporates shell decomposition, node representation. This strategic approach selects candidate nodes based on their connections within network shells and topological features, effectively reducing the search space and computational overhead. The algorithm employs a deep learning-based node embedding technique to generate a low-dimensional vector for candidate nodes, calculating the dependency on spreading for each node based on local topological features. In the final phase, influential nodes are identified using results from previous phases and newly defined local features. Evaluation using the independent cascade model demonstrates the competitiveness of the proposed algorithm, highlighting its ability to deliver optimal performance in terms of solution quality. When compared to the Collective-Influence (CI) global algorithm, the presented method has a significant improvement in the differential infection rate due to its faster execution.

Suggested Citation

  • Wei, Pengcheng & Zhou, Jiahui & Yan, Bei & Zeng, Yushan, 2024. "ENIMNR: Enhanced node influence maximization through node representation in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007446
    DOI: 10.1016/j.chaos.2024.115192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.